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Motivation

2) What does the basal slip surface look like and 

how does it influence landslide motion?

• We use 3D velocity from NASA UAVSAR and mass 

conservation to infer basal thickness and geometry

• Thickness is highly variable and basal slip surface 

is bumpy and irregular

1) How do slow-moving landslides respond to 

seasonal and multi-year changes in rainfall?

• We use InSAR to quantify velocity changes in 

response to changes in precipitation

• Landslides display both seasonal and annual 

variations



• Large (> 400 m long)

• Deep-seated (> 3 m)

• Slow moving (< 4 m/yr) Head

Transport

Toe

• Distinct kinematic 

zones 

• Sliding along basal 

and lateral faults

Lateral Fault

Di Maio et al. 2013

basal fault

Slow-moving Earthflows



Photo courtesy of J. Roering

Northern California Coast Range

Lithology

• Franciscan mélange

• Accretionary prism 

complex

• Argillaceous matrix

Image from Kelsey

(Kelsey 1978; Mackey and 

Roering, 2011)

UNITED STATES

CANADA

Mendocino 

Triple 

Junction

Tectonics

• Mendocino Triple 

Junction

• Uplift rates ~ 1 mm/yr

Understanding Plate Dynamics 

(USGS)

(Lock et al., 2006)

Mackey and Roering, 2011

Eel River Catchment

• Precip. = 1.4 m/year

• 80% between Oct & May

• High erosion rates ~ 0.9 

mm/yr

(Wheatcroft and Summerfield, 2005)
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• Seasonal velocity changes

• Driven by precipitation-induced changes in pore-water pressure
(Terzaghi, 1950; Iverson and Major, 1987)

Seasonal Kinematics

ALOS-1 

time 

series



• Multi-year velocity changes

• Average landslide velocity has decreased in response to long-term 

moisture deficit (98 landslides analyzed)

Multi-year Kinematics

• PDSI = Palmer 

Drought Severity 

Index

• Accounts for 

antecedent moisture 

conditions, 

precipitation, and 

evapotranspiration

Bennett et al. (2016)

Dry

Severe drought



• Purple = ESA Sentinel 

1A/B 

• 6 day minimum acquisition 

• White = JAXA ALOS2 

• 14 day minimum 

acquisition 

• Green = NASA UAVSAR

• irregular acquisition 

interval

Red polygons = landslide 

inventory (Mackey et al., 2011; Handwerger 

et al., 2015; Bennett et al., 2016)

SAR satellite coverage



Results

• Sentinel 1A/B and ALOS-1 time series

• Landslides continue to show seasonal displacement

• Total displacement significantly lower due to recent historic drought

• Now can better resolve motion (i.e. halt in dry season, lag time) 
• ie.
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Sentinel 1A/B time series (6 day repeat)
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ALOS-1 time series (46 day repeat)

Handwerger et al. (2013)

dry season halt

no apparent dry season 

halt

24 day 

response 

time

46 day 

response 

time

Boulder Creek landslide
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LOS

Boulder Creek landslide

Velocity (m/yr)

Results

ALOS-1

Worldview

Sentinel 1A/B

UAVSAR

ALOS-2

• Multi-year velocity changes

• Changes in annual precipitation (i.e. pore-water pressure)

• Slow down associated with 2014-2015 drought

• Apparent velocity increase following above average rainfall 

avg. precipitation

similar speeds increased speed decreased speed increased speed



• We use 4 LOS observations to solve for 

for 3D deformation 

• Overcome limitations from the 1D viewing 

geometry

• Landslide moves downslope – we can 

resolve movement of “tributary” landslides

NASA UAVSAR

Results

North

East

Up

-15

-7.5

0

7.5

15

Velocity (cm/yr)

1 km

N

variables

▪ line of sight measurement, o

▪ displacement vector, 𝑑

▪ line of sight direction, መ𝑙
▪ basis vectors, Ƹ𝑒
▪ model matrix, A

1 km

Horizontal Motion



Results
AA’

AA’

AA’ Thickness 

vertically 

exaggerated by 

a factor of 2

Mass conservation 

variables

- landslide thickness, h

- time, t

- depth averaged landslide velocity, u

Assumptions

- constant density

- basal slip surface elevation does not change

- changes in thickness are responsible for 

observed 3D deformation

Booth et al. (2013); Delbridge et al. (2016)

Findings

• Landslide thickness is highly 

irregular

• Basal slip surface is rough and 

bumpy

• Implications for long-term 

kinematics



• Recent SAR data provides opportunity to 
quantify landslide kinematics over a period of 
< 1 week to multiple years

• We find landslide velocity is sensitive to 
changes in seasonal and multi-year rainfall

• Landslide thickness is highly variable

• The basal slip surface is irregular and 
bumpy, which may have implications for 
kinematics

Concluding Remarks


